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Abstract
We consider a controlled Markov chain whose transition probabilities and

initial distribution are parametrized by an unknown parameter 9 belonging
to some known parameter space e. There is a one-step reward associated 0
with each pair of control and the following state of the process. The ob-
jective is to maximize the expected value of the sum of one step rewards
over an infinite horizon. By introducing the Loss associated with a control
scheme, we show that our problem is equivalent to minimizing this Loss. op
We define uniformly good adaptive control schemes and restrict attention to
these schemes. We develop a lower bound on the Loss associated with any
uniformly good control scheme. Finally, we construct an adaptive control
scheme whose Loss equals the lower bound, and is therefore optimal.
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1. Introduction -

Consider the following stochastic adaptive control problem: The system is mod- ,.1

elled by a controlled Markov chain with an unknown parameter, i.e.

Ps{x.+- = YIXn = Xx,,_,,... aXo, V,, .,o} = P(X, ;, 0) (1.-1)-..

>.

where Xo, Uo, X1, Ui,, X,,, U,,, X,,+i.... is the chronological sequence of states ,

and control actions, and 0 is an unknown parameter belonging to some known ,,'
parameter space E; and..

19(Xr = X) = p(X;) (1.2) r,

where 0 is the same as in (1. 1). There is a one-step reward r(X,,, Un), associated .
with each pair (X , U), n > 0. The objective is to find an adaptive control scheme

.-.

which maximizes, in some sense, thexptedvisothe ch sum of one-step rewards otae

r(X, U,) (1.2)
i=i T

One of the current approaches to stochastic adaptive control problems is the

so called "Certainty Equivalent Control with Forcing" (cf [11). This scheme is \ - / %

self-tuning in the Cesaro sense and is therefore also optimal for an average reward

per unit time criterion (cf [1]). The reward criterion described by (1.3) suggests "

that we need to determine the maximum rate of increase of E#J, as n --( 10.3s on r

This requirement introduces a notion of optimality that is stronger than the oneT,'

suggested by the average reward per unit time criterion used in [1]-[7]. For the

i3t r 11b't Ion/- €'

~t
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criterion (1.3) it is no longer clear that the Certainty Equivalent Control with "

Forcing is optimal.

The same reward criterion as (1.3) was previously used in [8] for the study

of the controlled i.i.d. process problem. This criterion was initially used by Lai IL

* and Robbins [9], [10] for the multi-armed bandit problem. Various extensions of

the Lai and Robbins formulation of the multi-armed bandit problems have been

reported in [11] and [12]. In this paper we show that the adaptive control problem

of Markov chains can be viewed as bandit problem with Markovian rewards. Such

a relation provides a convenient way of analyzing the problem, and allows us to

develop an "efficient" adaptive control scheme. (We shall precisely define what we

mean by efficient in Section 3.)

2. The Problem

2.1 The System Model

Consider a stochastic system described by a controlled Markov chain on the

state space X, with control set U, transition probability matrix

P(u,9) {P(x, y;u,0)IX,y E X} (2.1)

and initial probability mass function

.p..
P(O) :={P(X;O) Ix E X) (2.2)

The parameter 0 is unknown, but belongs to a known set E. Assume that X,U

2

I,

o

I,:A 2, .... ¢ 
°
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and E) are all finite. Further assume that for -

x, y E X; u E U; 0, 0' E E), P (x, y; u, 0) > 0 =P P(x, y; u, 0') > 0 ; (2.3) .

~~for every stationary control law g : X ---+ U

P'(0) := {P(x, Y; (X), O)X, Y E X} (2.4)--

is irreducible and aperiodic for all 0 E Oand

#.4?

p(; 0) > 0 for all x E X and 0 E a e (2.5)se f

Let•
rx (0) = P (x;0) x X} (2.6)

be the stationary distribution corresponding to P9(0) and let

P,(0) {= (x Og(x) (2.4)

be the mean reward under that stationary distribution.

An "adaptive control scheme" -y is a sequence of random variables U,2}. 5)

taking values in the setto such that the event U,, = u belongs to the a-field

Fn generated by Xo, U, X, U,... Un-_, X. Let r(Xi, Ui) represent the one step 2-

reward at time i, where r :X x R. Further define J r(Xi, Ui) the.

total reward at time n as the sum of the one-step rewards upto time n.

Our objective is to find an adaptive control scheme f which maximizes, in some

sense, EwJr as n ti . We shall clarify this notion of optimality in Section 2.4. To

3 5
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p.

achieve our objective we would like to express approximately E8J, in terms of the 5

expected number of times each of the stationary control laws g is used up to time n,

and the expected one-step reward under the invariant distribution corresponding

to each g. For this purpose we need to translate any adaptive control scheme -Y to

an equivalent adaptive control scheme -y' with the following features:

(Fl) The control scheme -' chooses a stationary control law g," (instead of a control

action U,) at each time n.

(F2) Whenever a fixed but arbitrary stationary control law g, chosen by -I', is V4

used, the sequence of states observed in Markovian. Moreover the sequence

of states corresponding to the different stationary control laws, chosen by -Y',

are independent conditioned on the initial state.

In Section 2.2 we identify a set of conditions which if satisfied, lead to a control
scheme -/' that has the above features, and we construct such an equivalent control

scheme. In section 2.3 we define the probability space (f', F, Po) which allows us

to define a sequence of states which for each stationary law g is Markovian, and

independent of the sequence of states of any other stationary law g', conditioned

on all their initial states. Using (fl', Y', Pe) and y' we can define a control problem

that is equivalent to the original one, and we can express EJ, in terms of the

expected number of times each of the stationary control laws g is used up to n,

and the expected one-step reward under the invariant distribution corresponding

to each g. Such an expression for EOJ, allows us to precisely define the sense in

4.-

0
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which we want to maximize it.

2.2 The Translation Scheme

Lemma 2.1 Given a controlled Markov chain on a finite state space X and with

a finite control set U, for any adaptive control scheme - (as defined earlier) there

exists an "equivalent adaptive control scheme" -' taking values on the set g

{g : X --+ U} of stationary control laws with the following properties.

(i) /' is a sequence of random variables {g,,}, 0 taking values on the set ! such

that the event {g, = 9} belongs to the o-field J' generated by X 0,go, X1,g1,
..g n _- X ,, v 

" 'n

(i i) U. (w) g. (Xn) (w) Vn, w.

(iii) If nk and nk+ are any two successive time instants at which a stationary

control law g (fixed, but arbitrary) is used, i.e. g, -g,+ -g and g,,

g, nk < n < nk+i then X,,+ = X,%+.'

(Notice that (i) implies ,, = Yr .)

Proof (by construction)

Let #X= kandlet zV , zX 2 ... ,X' be a prior (but arbitrary) ordering ofx.

Similarly let #U = 1 and U = {u,u 2 ,... ,ul}. To start off observe X0 and then

reorder X as x, X 2, ... , Xk by a left cyclic shift of the prior ordering, such that

X= X0 . Define g'; i = 1,. . . , k inductively as follows:

5 N

6 ,A



1;o' = {gEQ:g(uX')u', l<j<k}'

90' = i=2...,k.

k
Notice that go; i = 1 ... , k defines a partition of 9, i.e. U = and i 71- J

o n g =

Now suppose at time n > 0, i.e. after observing X,, we have a partition

i =1,..., k of ! with the following five properties:

P) ;i = 1,..,k is determined byY

P2) V 1 <i < k Vg E !;, the last time upto time n- 1that the controlg was

used (if any) was followed by the state x.

Let

X,= x" for some j,, = 1,...,k (2.8)

Then,

P3) Vj < m < k and for any fm : {xl,...,x} -* U there exists a unique

P4) V 1 < m < j, thereexists a unique f,: x ,...,.x }  V9g E
Tm

U gi ,. # fn, and

P5) V 1 < m < jn the above found f,'s satisfy f', = f.,{.

.4;

Also assume that

,..,

4
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P6) gi, 0 < j < n satisfy properties (i), (ii) and (iii) of Lemma 2.1

We shall now show that we can choose a g,, satisfying property (P6) on the

basis of F' and construct a new partition g ,+l;i = 1,... ,k satisfying properties

(P1)- (P5) assumed true for time n. Choose gn E 91- (j as determined by (2.8))

p such that

n g~I ...... = fint and gn(X") = g,,(X,,) = Un. (2.9)

Such a choice is clearly possible by the above induction hypothesis (properties

*, (P3) & (P4)). By noting the fact that U,, is determined by F,, = .," and by the ('A -

induction hypothesis (properties (P1) and (P2) and (P6)) it follows that (P6) is -

satisfied for n + 1. Next, let X,,+i = Xjn+ for some jn+ 1,..., k. If j,,+1 = n

then := 9, Vi = 1,. .. ,k, and it trivially follows that 9 i = 1,... ,k

satisfy (P1)-(P5). Else, if jn+1 # in, !,,+j := 9,7- {,,},,'+t := Qn' + {g,,},

and V i# ,.'+, ,+ := Q. In this case also it is easy to check that i

satisfy (P1) & (P2) To show that !9, +l satisfy (P3)-(P5) consider two cases

Case 1 in+, > Jn

Vk+, U= - {g,,} + {g,,} = U!R Thus (P3) is

satisfied.

.m mn

V < m <iU Thus (P4) & (P5) are satisfied for

1< m < n and 1 < m < j,, respectively

.",A

7I



nV j < m <jI+1o U +1 = U 9' -{g.}. Consider the f" =..........z}-
i=1 i=1

By the induction hypothesis (P3) it then follows that (P4) is satisfied for

ji < m < j.+.*

Clearly this construction of f, also satisfies

fi-, = fj{'.....-V} Vj < m<n+

and by (2.9) it also follows that

(old) (new)

Thus (P5) is satisfied for j. 5 m < Jn+i.

Case 2. j,+, < in 0

m m In

- , m < k U , - {9,} + {,n} = U . Thus (P3) is
t=1 i=l t=l

satisfied for jn < m < k

in In
mn+i = 9n, + {9n}. And since f" = ..... .. was

-I M < 1.=i-

the unique one missing from U j;, (by (2.9) and induction hypothesis (P4),
s=--1 n.,

(P5)) it follows that (P3) is now satisfied for jm l < m < j.-

= II

<V M < J,+ J = 1 ;', and thus (P4) & (PS) are satisfied.

The proof of Lemma 2.1 is now complete (using induction) by checking that.

the induction hypothesis is satisfied at n =0.

.1'

0



2.3 Extending the Probability Space

Let Q = (X x U)' be the space of all X x U sequences (i.e. sequences of the ".

type Xo, Uo, X 1,U,,...). Give (X x U)' the product a-field F = a((X x U)'),

namely, the smallest a-field such that X0 , U0, X1 , U,... are measurable. There is

a unique probability Pe' on (Q, .F) such that for all n and all Xo,..., z,, in X and
UO, .•, Un  in ,,'

Z'e{Xi = xi, U 1 = ui, for i = 0, 1,.. n}
n-1 I,

= p(o; 0) R I-[ X+1 il0
i=0

x H 1{7,(Xo, Uo,....,) u,} (2.10)

This triple (1,.F, P9) is the minimal underlying probability space required for the

description of the problem we address in this paper.

For purposes of analysis and to capture feature (F2) it is useful to extend this

probability space which we shall now proceed to do as follows: Let Q = {gg,..., g }, S

and Xd = {z = (0 ,.,x") : ' X}. Let ST = (Xd)- be the space of all Xd

sequences (i.e. sequences of the type X¢o, X,...). Give (X')-c the producet a-field

F = a((X')*), namely, the smallest a-field such that XOXL,... are measurable.

There is a unique probability PO on (f', T) such that for all n and all , . .-. 5.

in Md, .-

9 1

'°'



P9{X,=z. for i=0,1,...n}

d ,-i(f I0) I'I P" ( 0) (.z
j=1 i=O

where f : Xd -- ' U {A}, A is an arbitrary element used to augment the state

space X for the purposes of analysis, and f is defined as follows: For each x E X

" left cyclically shift {x 1'... x)'} to {x', x} such that x' = x. Consider 90 (from

section 2.2) constructed as before on the ordering {xI,... ,zX}. Let h : , -- X- ,

such that if gi E go then hi(x) = x'. Clearly, h is one-to-one, but not onto. Let

h[Xj be the range of h, and h- : h[,X --+ X be the inverse of h on its range (h-1

is well-defined as h is one-to-one.) Finally, let f Ih[sz = h-1 and f(z) = A VzL E

Xd - h[X], and p'*jx = p(O) (defined by (2.2)) and pO(A) = 0.

Now on this probability space that we have constructed (note that there is no

dependence on the adaptive control scheme - so far) we can define the random

process XO", UO0, Xj', r,... by using the equivalent adaptive control scheme -t". To

start off let XV := f(Xo). Now given X~o, Uro,..., X, choose adaptively g,, such

that, U' := g,(X,) and X,,+ := X-9, where T" is the number of times the con-
-aq

trol law g,, was used upto time n (in Xo, Uo,... , X,), and X3R,+, is the component

of XrT.+, corresponding to gn. It can be easily verified that the random process

X0, U', X1, U ,.... constructured above has the same distribution (in (fT, JF,,))

as the one given by (,.F, Pe). Note that for & 3 f(XO) = A the process is

undefined, but that is not important as {e o : f(KO) = A} = 0.

Using (f, Y, P') and -y' we can now express E.J,n in terms of the expected

IL
10
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number of times each stationary control law g is used and the expected one-step -

reward under the invariant distribution corresponding to each g. 0

2.4 Analysis of the Reward Criterion

Consider

Jn = E r(X,, ,)
i=O
n-I

S= Z(X,,U,)Zl(g, =g) 1 (X,= x)

i=t-

--- _, _,r(Xi, Ui)l1(gi g) 91(Xi- z)

t="0

ft-9 SE

Neane (x, gp()) N (x, T') (2.12) e

where f o a a Vr( X-

T.9 --=Ix Tn' 1(Xl =x,, ) ..
i=0

and ":=V,

n-I ,
Tn' ' (gi -" ) .(2.13) ::

Note that in the extended probability space (Ql', PT, Pe') Tn' is a stopping w.r.t, the .:

increasing family of oa-algebra.9{ V -') V- Yng where .XO = o(X09, X-1,.. ,X)t

ftec
1 g



To express EN9(z, T) in terms of the invariant distribution under g and ET"

we use the following result:

Lemma 2.2 Let X 0, X,... be Markovian with finite state space X, transition

matrix P-irreducible and aperiodic and stationary distribution ir. Let F,, denote

the a-algebra generated by Xo, X..., X,.. Let 9 be another a-algebra and A an

event such that A E Fo V 9 and {Xo = x} fl A = { A C{Xoz} Furthermore let

be independent of F, conditioned on the event A. Let r be a stopping of { V.F,,}

such that E[rA] < oo. Let

N(x, r) = (X, = X)
s=0

Then, for some fixed constant K , independent of A, x and r.

IE[N(x,r)IA] - 7r(x)E[rlAl < K (2.14)

'.

Proof: Follows from Lemma 2.1 in [11]. %

Notice that V 709 and F.9 are independent conditioned on the event A, = : :
g'EG
g'# .', ,%

{Eo=,. X". Moreover A , E V Fo C((V -t) VJo) and {X =

( otherwise ,.

Therefore by Lemma 2.2 it follows that

0.

2Ee[N2 (x,T.9)IAj - ir2 (x;0)Ee[T.IA] 1 K

12
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for some fixed constant K independent of j, x and n. ILO

Thus,

IEa[N-1(x, Tg,) 7r-r(x,) Ee T,-,] K (.5

From (2.13) and (2.15) it follows that

iEeJ.-Zu'(O)E9T,'I K' (2.16)

ge"V.,

where K' is independent of n and 0(0) is as defined by (2.7). Let g*(-) 0

arg max(u 9 ()) , and for simplicity assume that it is unique for each 0 E 0. Thus
gE9

if we knew the true parameter the control scheme g,, =f(G) gives the optimal ,

reward (upto a constant) for all n, and for this scheme

Ea J. - n p-q(0)s K' (21)..

In the absence of the knowledge of the true parameter it is desirable to approach

this performance as closely as possible. For this purpose we define the Loss asso-

ciated with an adaptive control scheme i,

:~ ..,-,."~

L4(O) := f/is(9)(0) - E*J. (2.17) * .:

By (2.16) it follows that

IE J, -<K'. .'..","

/,,(9) - (pu(01(0) -:(O))E*T.9j const. (2.18)

g;'(e) S

Maximizing E#J,, is thus equivalent to minimizing the Loss. More precisely we want

to minimize the rate at which the Loss increases with n (e.g. finite, logrithic,

13

,,.,.]

', ',,• ,, t ,y . ,-,', . , /' , ; /' ,-,, "., ,'',.,,'.,, ;. , e.','.,?.,:,.:, :,,, :,/.,',.:,.',.',% ::.:. '. :,_:, : : , - .-



i ,

linear etc.). Thus, this is a stronger criterion for optimahty than the average -

reward per unit time criterion (used in [1] - [7]) which only requires the Loss to be

o(n). In view of (2.18) the above problem is reduced to one of minimizing the rate

at which EOTg increases for g E 9,g g*(O). r"

Note that it is impossible to minimize L,,(O) uniformly over all parameters

0 E E. For example the stationary control scheme g,, = g'(0) for all n, will have

a finite Loss where the true parameter is 0. However, when the true parameter ..

is 0' such that g*(0') # g'(0), then this scheme will have a Loss proportional to

n. Having made this observation we call a scheme "uniformly good" if for every

parameter 0 E 0

L,,(0) = o(n*) for every a > 0 (2.19)

Such schemes do not allow the Loss to increase very rapidly for any 0 E 19. We

restrict our attention to the class of uniformly good schemes and consider any

others as uninteresting.

3. A Lower Bound on the Loss

In this section we obtain a lower bound on the Loss L,,(O) for certain values _,

of the parameter 0 E. Before we present the bound we introduce the necessary

notation. Let

B(O) {' E e P,'(0)(o') = P'()(o) and g'(O') # g'(0)}, -,ar

C, := -{g()} ,.-°

14 4
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P

A,( (oe9, b E Go) >e, a' 1 (3) -

6

9Eg I I %P

de(g) (~~'()-,u'(0)) and

Note tht199 ') sjs th e(~ xpeat io: epecttothinaran measure of

P9(9) ofteKlakLiebler numbers between the individual rows of P9(9) and

Pg(O') thought of as probability distributions on X.

The bound is now presented in the form of Theorem 3.1 below.

Theorem 3.1 Let 0 E 0 be such that B(O) is non-empty. Then for any uniformly

good control scheme , under the parameter 0,

logn 1
1) lim PO E T9de(g) < 0 ) O >0 '.".,n-oo I + 2p 12¢ (0, % . , ,

max rTun ,-,

aEAe 0G'EB(#) aod,(g)%
(3.2)

Consequently, " ..

2) liminf > min max (3- 3)'(9)
n- logn aEA. O-EB(,) agO19(0, r) -.(3.3

Proof %

The proof can easily be obtained from that of Theorem 3.1 of [81 by subsituting

g for u and je for Us and by invoking the ergodic theorem instead of the strong .-

law of large numbers. 0

15
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Note that we do not have a lower bound for those values of 0 for which B(O)

is empty. In view of this observation and the above lower bound we call a scheme

efficient" if

limsup L,,(O) < min max ctde(g) if B(O) is non-empty

n-o logn E. 'EB(x) 's 19(0,6') 0.
Ce

Ln(0) < OC if B(O) is empty (3.4) S":

4. The Control Scheme ;2

4.1 Preliminaries

Let M 2) be the unit simplex in R IX 12 identified with the space of probability

measures on X,.

4
Let

V-(x,y) :=T i(X;O) P9 (x,y;6); x, y E X (4.1)

Then 4 = {(4(x, y) x, y E X} XE M (  Since E) and Q are finite 4 take on only

a finite number of points in MO) . Therefore it is possible to find an e > 0 such for

all values of A4 we can identify e-neighborhoods ("i-nbd of £#") of the type:

-nbd(4) := {E E M(): max Iv(x,y) - 4(x,y)l < f} (4.2)

which are disjoint for distinct values of £4.

Also define

S(O) := {0' E e: Pg')(0') = P'')(0) and g'(0') = g'()} (4.3)

16
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This is the set of parameters for which the optimal control laws are the same as -S

that for 0, and the transition probabilities under the optimal control law are also

identical. Let . ,

9(S(0)) f{ P,(O') # Pg(o), 9' E S(O)}. (4.4)

Recall from Section 3 that

B(O) {0' E E Pg*(*)(O') P'")(9) and g*(O') # g*(O)} (4.5)

This is the set of parameters for which the optimal control laws are better than

the optimz.l control law for 0, and the transition probabilities under the optimal

control law for 0 are identical.

Let

a(0) = {or(0) g E ge} (4.6)

achieve the minimum in the lower bound for the Loss in (3.2), where Qe =1 -

{(O()} and
% '.

T91 Eq[inf{n > 1X,, = xo}IXo = XoI , (4.7)
A
j.% .,"

be the expected reccurrence time of the state x0  under the control law g . On

the basis of these define,

3(f) = {,9(0) g E ge} with /'(0) = a ()T.* (4.8) .(o)gE: • , . .

17 0
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4.2 Description of the Control Scheme

Let x0 E X be an arbitrary but fixed state. Define the {.Yt = o(Xo, X 1, ,..., 

X¥L.- ,t- ,.Xt)} stopping times to, r,, by r, := nf{t > rm.¥, = xo},m >

1, and ro = inf{tjXt = x0}. The control scheme we construct chooses a stationary ,

control law at times 0, to, r,... adaptively on the basis of all the past observations %

and past actions, and use this control law till ro - 1, r1 - 1, -2 - 1,... respectively.

That is, over each recurrence interval marked by the state x0 we use the same

control law which is chosen adaptively at the beginning of that block. With this

in mind we now describe how the choice of control laws is made at the beginning

of each block. From now on we shall refer to the actual time as time and the

reccurrence points as instances. Initially, i.e. at t = 0 , choose a fixed but arbitrary

control law go and use it till time "o - 1. Then to start off, use each of the control

laws g E P once each. From then at each recurrrence point, compute the empirical

pair measure p := {p(z,y)IX,y E X} E M (2) corresponding to each g E 9 as

1 n-i

eng, = g,X, = z,X,+1 = (4.9) -"

where n is the actual time

Define the conditions

Cl(9): P9 E e-nbd (4) V g E C and B(O) is empty %

C2(0): gn E e-nbd (4) Vg E and B(O) is non-empty.

C3: there does not exist 0 E) such that Pn E e-nbd ( 9) E9 EQ.

18
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(Note that C3 U( (C() U C2(0)))' Proceed as follows.

1) If CI(0) is satisfied for some 0 E 0 then use g'(9).

2) If C2(0) is satisfied for some 0 E E) then do the following: Maintain a count of

the number of instances condition C2(0) is satisfied. Of these, for the first instance *'%

, a. .-

choose among those control laws g E Go randomly with probabilities 3-g(0). Refer,,../

to this process as "randomization". For those instances when this count is even•(call this situation C2(0a) use g2(O). For other instances when the count is odd

(call this situation C2(0) b) compute the likelihood ratio

r xpgr (X"., X 1; O)A,,( ) fo so 9 mtn dteown M i o

of 0 vs B(O), where cdi X 2(. ) is, tfis the sequence of pairs of control

laws used and states observed upto time n when "randomization" is done with

03(0). If A,, > K,,+, (say C2(O)bl), where &, = n(log n) P for some fixed p0 > 1, the

use g*(O). If A. <5 If.+, (say C2(0)b2) then do the following: Maintain a count :'.

of the number of instances this condition (C2(0)b2) is satisfied. If this count is a

perfect square (say C2(0)b) te). If this

count is not a perfect square (say C2(9)b2b) then do "randomization" using/0(8). "

3) If C3 is satisfied then use round-robin amongst g G.

19 . *
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4.3 Upper Bound on the Loss,

In this section we derive an upper bound on the Loss associated with the -:

adaptive control scheme -constructed in Section 4.2. The bound is given by the

main Theorem 4.2. Lemmas 4.1, 4.2, 4.3 and Theorem 4.1 are needed for the proof "

of the main theorem...

Lemma 4.1: Let X0, X,... be Markovian with finite state space , transition

matrix P, invariant distribution r, and initial distribution p. Let M ) be the ..

unit simplex on R IX41 ident ifie d with the space of probability measures on X i, and

let K C M( ), closed, such that rP K. Let p,, := {p,,(x,y)lx,y E X} where
* ~n-1 .'

pn(X,Y) =- , {X, = x,X,+, = Y}. Then
n

(i) P(pn E K) < AC -"  for all n > 1 for some positive constants A, a.- I

Let N := l(p,n E K). Then .
n=1

(ii) EN < .•

Let L := sup{n > 11p, E K). Then

(iii) EL < o.

Proof:

Part (i) follows from the theory of large deviations. See [14], Problem IX.6.12.

00

EN , P(P E K)
n= 1
00

< FAe -an

n=1

2
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< 00 which proves (ii)
Z ,i

EL = E 1(3 i > n,p, E K)

00 (P )

= E l(U"p " 
K))

n=1 t>.n

< P(p E K)
n=1 i. r..n''.

< ZAe -.

ni=1 n S
< 0o which proves (iii), 0

Lemma 4.2: Let Sn = X, +... + Xn where X 1, X 2 ,... are i.i.d., EX, > 0 and

00 
00

let N = I(Sn 5 0), L = 1(inf S, < 0). Then the following are equivalent:
nt>n

(a) E(IX, I (X < 0)) < 00.

(b) EN < 0.

(c) E L < 00.

Proof: See Hogan [15].

Lemma 4.3: Let X 1,X 2,... be i.i.d. Let f' be a real valued Borel function such

that 0 < Ef'(X) < 00,i E I, finite. Let S = fi(XI) + f'(X2 ). .. + f'(X,,), L'A =

1(inf S, < A), and LA = max LA. If E(If(X)I 1(f'(X) 5 0)) < o0 for all -.
n=1 t>n -il.

i E I, then
ELA < '''

limsup < (4.10)
A-oc A min(Ef'(X)) (

210
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Proof: For E > 0, and for any fixed i E I
Ar

L < ( + . L (4.11) 'd

Ef'(Xj)

where 1

.= I inf S tEf(X) <0 (4.12) 7-,,= ( \t>n 1 -

Consider the i.i.d. r.v.'s -

Ef'(X,)

We have,

E{IZ'I2 1(Z _ 0)} _ 2E i i(XI)12 + +i ) 1 (X ) - 1 ) }
< 2E {If'(X,) 1(f(Xi) _ 0)}

+2E If(X)12 1 0<f'(X)_ Ef(X)) + 2 (Ef1(X )

<00

Then, by Lemma 4.2 it follows that EL' < oc. 1

Therefore Ip

E(max L') E(E'L') - EL'-k(c)< oo (4.13)S iEl sE. 'P

for some constant k(c) independent of A.

Now,

LA max LA < max + L.
L ei - Ef'(XI) .

< A(1 + ) _ max Ll (4.14)

min(Ef'(X,)) +
'El

22
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By (4.11) and (4.12) it follows that
.

N ELA : A(1 + ) "

E min(Ef'(X,)) + k()

limsupELA <
liA-_ A rmin(Ef'(X))

iEl

By letting e -- 0 we get the desired result. 0

Theorem 4.1 Let 0 E ) be such that B(O) is non-empty. Then, 1
J%

J"

(1) limsup Ee E1(A,(0) <K.+) /logn 1
- L- min B'(9)T9 , 0 I'(9,9)

l'EB(O)

' (4.15)

( Pe, A > 1 f < < 1 for 0' E B(O).(2) P9,{A,(0)U > i+ or some _ < _ < v--_-K-'7;

(4.16)

Proof:
-,.-

Let X&, Xr,... be the sequence of observed states when "randomization" is used

with a(O). Let X ° = U x, with the Borel a-algebra of the discrete topology,
t>.

i.e. all subsets are measurable. The process {Xl}>o allows us to define X ° valued

random variables B1 ,B 2,... called blocks as follows: Define the {.'} stopping

times rk, k > 1 by

7= inf{t > rk-IX - X = zo}

23
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with 'r= 0. (Note that Tk !5 Co a.s.). Then

Bk =(X" '_, -I4 . ,...X ~

Let B'k (Bk,g9k). Since the same control law is used over the entire block, and the

5,choice of the specific law for each block is made by independent random-i zat ions at

the beginning of the block it can be easily shown that {B'} are i.i.d.

LetP~( t X )

f 91(B~ = lo P(Xk ,Xr ..;O). . (Xr.._, X ; ;O)

Ee~f91(B()I ) og o ~

rkIOJ

ta2(O-E N Px~,Bkl Xt, 11
E,3 ()E E xy )log P2x r')L0 X10

- ~~f39((e)Y 01)(~yO

-~,E P,39e)T* YI;e e)

and

Eq[(f'(Bk)) 2 1(f'(Bk) :5 0)lXo = 1]

- Z/9(0)Ea[(f#'((Bk,g))) 2 1(f'((Bk,g)) :5 0)IX0 = 1]

E- 3 Z '(0) 1 PIP(Bk;IX 0 X 0) (logP(B;Io=0)2
go BkEX* P9 (Bk; 01 Xo = 10o)

24



.4

( 1 log P9 (Bk; O IXo = o)- ",),

P9 (Bk; 01Xo = xo)
-Z '() P P(Bk;O'1Xo ; P'9X = 'ro ) ..C . B , X "4

(o P9(Bk; OIX 0 = XO) ~ P'(Bk; OIXo = X()) )4'log P ; - Xo = Xo)j P (Bk; 0'IXo - X

4 4
< /2(0) . P'(Bk; 'IXo = o) as x(logx)2 <_ on 0 x < 1

".Bg ,X • --:

4

Thus by Lemma 4.3 we have the desired result (i).

To prove (ii) note that

{A(O) > k,,+, for some 1 < i < n}
- t+'+ + ~~~~Pg'(xr,xVr,;o,) > "  frsm1<< ;

m_ > k,+, for some 1 < i < n %

£X'., t+0 fo 1,

1- LL P(Xr, Xr ; ,) e
for any 9' E B(9), and P ()+} is a+ ;m0')ngal

under 9' with mean 1. "
':lt. -9 '( " n r+(O ) t ( , )

...- o,+at.

Thus the reul foo by th Fubmartingale ieult se[3,p 4)

(i)~ < o if B(O)) in e +p(y o i.sne

Ea T,-, <ol lo if B(O) is n-empty (.7

25
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Consequently

() L() (0)(g)a +ol log n if B(O) is non-empty

9 'EB(O)

L, (0) < oo if B(O) is empty (4.18)-

where a(9) = {&-(0) g E !Ce} is defined by (4.6).

Proof: As in Section 4.2 define the {.t(= -(Xo, UoXi, -- --. : -stop-

ping times r*o, ri,* by Tm : inf {t > 'r,_1 IXt = 'Ol with ro inf {nIX" xo}.

Then rm <00o a.s.. Then for any n > 0, any g E !;e we have

n-I

1=-

< (ii(g) L=g)( r+ ri) +T

since the choice of g's is only made at the stopping times T,. So

00

E T'( e E I(9 =i ) - ,)1(r <4n) +- K.
1=0

00

whEE[Ee[1(g, = g)((r) < n)(,ri+ - rd)17in y] + E4./
t=0
00

p .. bEy (g, = g)( r < n)Ee[(ri t - r oY1.j, + Eero
i=0
00

O [ 1 (g(, = g)1(r, <n)T,'] + E9 Q:
i=0 (%

T E 1(g, = g) + E r,

i:r, <n

Let us now examine the term E 1(G= g), where G- ,

26
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I 1+ Z 1(G,=g)
ig~r, <nn

=I + 1{Gi = g, C(0') is satisfied at stage i for some 0' E e}
,>d: r.<n

+ E 1{G, = g, C2(0') is satisfied at stage i for some 0' E E}
rh.ri

+ E I{Gi = g, C3 is satisfied at stage i}
i>d:ri<n

S1 + Term 1 + Term 2 + Term3 (say), (4.19)

r, where C(0'), C2(0') and C3 are defined in Section 4.2 and d is the cardinality

of the set g of stationary controls. Let us now examine each term separately.

.

Defining L- by

L sup {p9 e -nbd(4)} (4.20)
T >

and noting that E#,I£ < oo by Lemma 4.1(ii), we get

Term 3 < V £Y, thus,

.

Es Term 3 !< Eo C' < oo, (4.21)

and Term 1 < C9, thus,

Ee Term 1 _< EsC9 < 0 . (4.22)

Term 2 = I{G, = g, C2(0') is satisfied at stage i for some %

.. ,~>d:', <n 
"
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0' E 0 such that v 4' v#"4(')},

+ Z 1{G = g, C2(0') is satisfied at stage i for some
t> d:r, < n

9' E 0 such that 9 E B(O')}

+ 1 {G, = g, C2(9') is satisfied at stage i for some
i > d:r, < n 

.

0' E 0 such that 0 E S(O')}

+ 1 l{Gi = g, C2(0) is satisfied at stage i
i>d:-ri <n -

- Term 2a + Term2b + Term2c + Term2d (say) (4.23)

Next we upper bound each of terms 2a - 2d separately.

Term 2a- 1 ' 1{G- g, C2(9')is satisfied at stage i}
8':B(#') is empty and i>d:r,<n

()_ g (9')

< L1+ 1 1{G, g"(O'), C2(0') is satisfied at stage I'
9':B(O') is not empty and i>d:a, <n

g'(5')- g'(o') "1

< (£g') + 1) (4.24)
0':B(9') is not empty andg*(')_ g'(e')

The first of the inequalities of (4.24) holds because under C2(0'), g'(O') is chosen

on all the even instances, therefore, on at least as many instances as any other

control minus one. The second of the inequalities of (4.24) holds because the

sum on the left hand side counts a subset of the times when g°(O') is used and ".

p,(g*(O')) E -nbd (,4()) where 9 is the true parameter.

28
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By Lemma 4.1(ii) it follows that

Ee Term 2a < (1 + Ee £-'(')) < cc (4.25)
0':B(9') is empty and

'o' ) $1., '

pL

Term 2b < {C2(0') is satisifed at stage i}
O':OeB(9') i>d:_ri<n

E 211 + E 1{C2(0')bl is satisfied at stage i}

':EB( ') id:r,<n

-2 + 1{C2(0')b2 is satisfied at stage i}

i d:-r, <n

'.Z'~ < 11+ 1 IA,(0') > K,, +}
VI:GEB(9' ) id:ri<n

+ E 1{C2(0')b2 is satisfied at stage i}
i>d:,r, <n

00E_ 2 1+ E 1{A 1.(0') > K} for some <
"OE': B(S') i=d

+ l C2(0')b2 is satisfied at stage i}l4.26)

0i>d:ir,<n

The first of the inequalities of (4.26) results by removing the condition G, = g.

The second one results by observing that the total number of time instants that

C2(0') is satisfied is upperbounded by twice the odd instants that C2(0') holds,

and by noting that the first time we randomize and the other odd times we call

C2(O')b. The third inequality results because {C2(0')b2 is satisfied at stage i}

implies {A,(9') > K,,+,}.

Consider now the term l I{C2(O')b2 is satisfied at stage i}.
itd:, <n

29
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Z1 {C2(0')b2 is satisfied at stage i}

-I Z {C2(0')b2a is satisfied at stage i} + If 1C2(8')b2b is satisfied at stage 1)~ .

I ,< > d:r, <ni

? 2

< 1 +2 1 1C2(0')b2b is satisfied at stage i}
i>d:;, <n

= 2 1 {C2(0')b2b is satisfied at stage i; of the number of instances
_ > d:, <n

that C2(')b2b has been satisfied so far, the fraction of instances

that g' is chosen E (O-'(O') - E, O3"(6') + f))

+2, 1 {C2(')b2b is satisfied at stage i; of the number of instances %
i>d:r, <n

that C2(0')b2b has been satisfied so far, the fraction of instances

that g' is chosen V (/3'(0') - f, 03'(0') + f)}

< 1 +2 l{pi(g') c-nbd (v) for some i > (3"(O')j-
j=l

+ 2 E 1 {of j the fraction of instances g' is chosen (09'(0') - E,/09'(0') + f)} (4.27)
J=l 1'

where g' E C, is such that vi # ."v

The first of the inequalities of (4.27) results by observing that the number of

instances when condition C2(O')b2a is satisfied (i.e. the count of the number of

instances C2(0')b2 is satisfied is a perfect square) is upper bounded by the number

of instances when condition C2(O')b2b is satisfied plus one. Consider now changing ",

the index of summation to the instances when randomization is done. Then the

condition C2(0')b2b along with the condition that the fraction of instances that g'

is chosen E (39'(0') - e, 3'(') + e) at stage i, imply that p,(g') V e-nbd (v.' or , .

some I > ( (9')- c)j. By extending the summation to infinity together with the

30
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above observation establishes the last of the inequalities of (4.27).

Thus, by Lemma 4.1(i) and (4.16) it follows that

Eq Term2b < E 2 [1 + (i(logi)P)-l +1 
0': EB(0') tind

+ 2 Aea Z Ae-I+2 A e

< 00 (4.28) .

where A,,a, A 2, a2 > 0 are some constants.

Term 2c = {G, = g, C2(0') is satisfied at stage i} a-.t -
O':OES(9') *>d:r,<n S

<_ (G 1 + 1_ 1 {Gi = g, C2(0')62 is satisfied at stage
':OE S ( O' I> d~r < n ,O

_: 1 _E [1+ l{C2(0')b2 is satisfied at stage ]1OVOES(O
)  i>d:r,<n R '

1 + 12 + 1{p,(g') V f-nbd (4)}(2j + 1)12 (4.29)

oE':SW() -

where g' E! (S(o')) is such that 4' # v,' and # Q(S(O')) = 1.

The first inequality of (4.29) results by noting that since 0 E S(O'), g 3 g(0') =

g*(0) can be chosen only when condition C2(0')b2 is satisfied, or at the first instance

when C2(9') is true. The second inequality results by removing the requirement

G,= g. The third inequality results by upperbounding the number of instances

condition C2(0')b2 is satisfied. 71his can be achieved as follows: First restrict S

attention to those instances that are perfect squares and the control g' is used. At .- -' -

these instances since C2(0') is satisfied p, (g') E e-nbd (v#,), thus, by the choice
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...

of g' e (S(O')),p,,(g') E -nbd (v')). Consider the sum of the intervals between -

the above instances. (Note that the length of the jth interval is upperbounded by

[(j + 1)2 _ j2 ]12 = (2j + 1)12.) Then the number of instances condition C2(0')b2 -

is satisfied cannot exceed this sum. Finally, the inequality results by changing the "'

summation index to all the times when g' is used and upperbounding the interval

following the time p,(g') €. e-nbd (v") by (2j + 1)12.

Again, by using Lemma 4.1(i) we get (.0

EeTerm2c_ < [1+12+ Ae -aJ.(2j+1)l2 < o (4.30)

Now if B(O) is empty then,

Term 2d= 0 (4.31)

I
Otherwise,

Term 2d = ( l{Gi = g, C2(0) is satisfied at stage i}
i> d: r, < n

< 1 + 1 I{G, = g, C2(0)b2 is satisifed at stage i}
>d:,. <n

= 1 + 1 I{G, = g, C2(O)b2a is satisfied at stage I
+ >d: <n

+ 1 {G, = g, C2(0)b2b is satisfied at stage i
i > d:r, < n

< 2 + 1 1{G, = g, C2(O)b2b is satisfied at stage }-
i> d:;, < n

+ ( 1 {C2(O)b2b is satisfied at stage i (4.32)

i> d:r, <n

The first of the inequalities of (4.32) is obtained by noting g # g*(0) can be chosen

only at the first instance when C2(0) is satisfied (in which case randomization is

32
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done) or when C2(0)b2 is satisfied. The last of the inequalities of (4.32) results 6

because the number of instances condition C2(0)b2a is satisfied is upperbounded

by one plus the square root of the number of instances C2(0)b2b is satisfied.

To upperbound Ea Term 2d we use (4.32), Jensen's inequality and the following

fact: At each instance i when condition C2(O)b2b is satisfied, the choice of the

control law Gi E go is made by an independent randomization 3(0). Then,
0

Ee Term 2d < 2 + Po{C2(O)b2b is satisfied at stage i}.0l9(0)
Ill

" 
IJ i>d:,r,<n ,

( 1/2 .

+ Po{C2(9)b2b is satisfied at stage i}
i>d:<T J

S2 + '3(0) Ea[sup{1 < i < nfA,() < K,,+ }

+ (Ee[sup{1 < k < nI A(O) < K+, 1}/2 (4.33)

Using (4.15) we get

lim sup Es Term 2d/log n < (4.34)
n~lo rnin )3- i(0) T99 1 (0, 0')9'EB(O) €

ComL ining (4.19), (4.21), (4.22), (4.23), (4.25), (4.28), (4.30), (4.31) and (4.34)

we get (4.17). (4.18) follows easily from (4.17) and (2.18).

0|

I

5.Conclusions
.A

.'S In this paper we considered the problem of adaptive control of Markov Chains.

The optimality criterion used, namely minimizing the rate at which the Loss in-
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creases is stronger than the average reward per unit time criterion. Multi-armed

ban,.it problems with "Loss" as the optimality criterion is one class of stochastic

adaptive control problems that has previously been analyzed. Therefore one way 'p

to proceed with our problem is to relate it to the multi-armed bandit problem, like

was done in [8] for the controlled i.i.d. process problem. The translation scheme .5,

p..

and the extended probability space are crucial in allowing us to view the adap- "" -

tive control of Markov chains as a multi-armed bandit problem. The stationary

control laws correspond to the "arms", and the sequence of states observed when -

any particular stationary control law is used are Markovian. The formulation then

resembles that of the multi-armed bandit problem in [11], part II. One very impor-

tant difference between our problem and that of [11] is that the parametrization of

the "arms" in our problem is not independent. This difference is reflected in the - ,

lower bound on the Loss we obtain in Section 3, and also needs to be kept in mind

when designing an optimal scheme like the one of Section 4. The control scheme

presented in Section 4 has an intuitively appealing structure as it clearly specifies

the conditions under which there is either only identification, or only control, or

identification and control, and treats each one of these conditions optimally.
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